
Universal Two-Factor Authentication
for the Web And The Mac

Thomas Westfeld
Cocaheads Aachen
2015-03-26

–Clifford Stoll

„Treat your password like your toothbrush.
Don't let anybody else use it, and get a

new one every six months.“

Who on earth does this?

Most Used Passwords in 2014
1. 123456

2. password

3. 12345

4. 12345678

5. qwerty

6. 123456789

7. 1234

8. baseball

9. dragon

10. football

11. 1234567

12. monkey

13. letmein

14. abc123
http://splashdata.com/press/worst-passwords-of-2014.htm

We are doomed !

Best Practices for Passwords
1. Choose long passwords (e.g. use Dicewords™)

2. Do not use keyboard patterns (qwerty, etc.)

3. Do not use consecutive number sequences (1234)

4. Do not reuse passwords along different sites.

5. Change password regularly.

Best Practices for Passwords
1. Choose long passwords (e.g. use Dicewords™

2. Do not use keyboard patterns (qwerty, etc.)

3. Do not use consecutive number sequences (1234)

4. Do not reuse passwords along different sites.

5. Change password regularly.✗Almost impossible for every password.
Use an offline password manager !

Authentication Is All About Factors

Knowledge Factors

Something only

the user knows

Authentication Is All About Factors

Knowledge Factors

Something only

the user knows

Possession Factors

Something only

the user has

Authentication Is All About Factors

Knowledge Factors

Something only

the user knows

Possession Factors

Something only

the user has

Inherence Factors

Something only

the user is

Two-Factor Authentication (2F)

********** +
Time-based one time password
TOTP (RFC 6238)
Counter-based one time password
HOTP (RFC 4226), iTAN or SMS

Two-Factor Authentication (2F)

********** +
Time-based one time password
TOTP (RFC 6238)
Counter-based one time password
HOTP (RFC 4226), iTAN or SMS

Drawbacks of Two-Factor Authentication

• Need to be able to receive SMS

• Needs to have your authenticator handy

• Transfer received code to login form

• As a fallback application specific passwords may be generated.

• Backup codes have to be stored at a secure location

Drawbacks of Two-Factor Authentication

• Need to be able to receive SMS

• Needs to have your authenticator handy

• Transfer received code to login form

• As a fallback application specific passwords may be generated.

• Backup codes have to be stored at a secure location

You cannot login without the second factor.

The FIDO Alliance

• Founded in summer 2012

• Publicly launched in February of 2013

• Published their first standard 1.0 in 2014-12-09

Universal Second Factor
Authentication U2F

FIDO Universal-Two-Factor (U2F)
• Challenge-response public-private key cryptography

• Uses elliptic curve cryptography to minimize key-lengths

• Easy to use, just push a button

How to use U2F ?

Register U2F device Authenticate w/ U2F device

Registration
Relying

PartyClientU2F device

WebserviceBrowserU2F dongle

Registration
Relying

PartyClientU2F device

WebserviceBrowserU2F dongle

generate
challenge

Registration
Relying

PartyClientU2F device

WebserviceBrowserU2F dongle

challenge c, appID a generate
challenge

Registration
Relying

PartyClientU2F device

WebserviceBrowserU2F dongle

challenge c, appID a generate
challengeCheck

appID

Registration
Relying

PartyClientU2F device

WebserviceBrowserU2F dongle

challenge c, appID a

c, a, origin

generate
challengeCheck

appID

Registration
Relying

PartyClientU2F device

WebserviceBrowserU2F dongle

challenge c, appID a

c, a, origin
Generate
kpub, kpriv,
handle h

generate
challengeCheck

appID

Registration
Relying

PartyClientU2F device

WebserviceBrowserU2F dongle

challenge c, appID a

c, a, origin
Generate
kpub, kpriv,
handle h

kpub, h, att. cert,
signature (a, c, h, kpub)

generate
challengeCheck

appID

Registration
Relying

PartyClientU2F device

WebserviceBrowserU2F dongle

challenge c, appID a

c, a, origin
Generate
kpub, kpriv,
handle h

kpub, h, att. cert,
signature (a, c, h, kpub) c, kpub, h, att. cert,

signature (a, c, h, kpub)

generate
challengeCheck

appID

Registration
Relying

PartyClientU2F device

WebserviceBrowserU2F dongle

challenge c, appID a

c, a, origin
Generate
kpub, kpriv,
handle h

kpub, h, att. cert,
signature (a, c, h, kpub) c, kpub, h, att. cert,

signature (a, c, h, kpub)
kpub, h
stored

for user

generate
challengeCheck

appID

Authentication
Relying

PartyClientU2F device

WebserviceBrowserU2F dongle

Authentication
Relying

PartyClientU2F device

WebserviceBrowserU2F dongle

generate
challenge

Authentication
Relying

PartyClientU2F device

WebserviceBrowserU2F dongle

challenge c, appID a,
handle h generate

challenge

Authentication
Relying

PartyClientU2F device

WebserviceBrowserU2F dongle

challenge c, appID a,
handle h generate

challengeCheck
appID

Authentication
Relying

PartyClientU2F device

WebserviceBrowserU2F dongle

challenge c, appID a,
handle h

c, a, h, origin

generate
challengeCheck

appID

Authentication
Relying

PartyClientU2F device

WebserviceBrowserU2F dongle

challenge c, appID a,
handle h

c, a, h, origin
Lookup

kpriv from
handle h

counter++

generate
challengeCheck

appID

Authentication
Relying

PartyClientU2F device

WebserviceBrowserU2F dongle

challenge c, appID a,
handle h

c, a, h, origin
Lookup

kpriv from
handle h

counter++

counter,
signature (a, c, counter)

generate
challengeCheck

appID

Authentication
Relying

PartyClientU2F device

WebserviceBrowserU2F dongle

challenge c, appID a,
handle h

c, a, h, origin
Lookup

kpriv from
handle h

counter++

counter,
signature (a, c, counter) counter

signature (a, c, counter)

generate
challengeCheck

appID

Authentication
Relying

PartyClientU2F device

WebserviceBrowserU2F dongle

challenge c, appID a,
handle h

c, a, h, origin
Lookup

kpriv from
handle h

counter++

counter,
signature (a, c, counter) counter

signature (a, c, counter)

check sign.
verify c

check and
store new
counter

generate
challengeCheck

appID

How many accounts on the U2F dongle?
• As many as you like!

• The private key is NOT stored on the device in Yubico’s implementation. Instead it
is encrypted with a 256bit AES key on the secure element on the dongle.

U2F Summary
• Every account on every website gets a new public-private key pair.

• The dongle has no UUID and cannot be tracked between different sites.

• No passcode has to be entered manually.

• No shared secret - even if key handle and public keys leaked one cannot copy the
U2F dongle.

References
• Yubico U2F demo server https://demo.yubico.com/u2f

• The U2F specifications https://fidoalliance.org/specifications/download/

• Yubico developers for U2F https://developers.yubico.com/U2F/

• Yubico U2F C host library https://github.com/Yubico/libu2f-host

https://demo.yubico.com/u2f
https://fidoalliance.org/specifications/download/
https://developers.yubico.com/U2F/
https://github.com/Yubico/libu2f-host

